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 Investment and Hysteresis

 Avinash Dixit

 T he economic theory of investment under competitive conditions rests

 on the foundations of Marshall's analysis of long and short run equilib-

 ria. If price exceeds long run average cost, this induces existing firms

 to expand, and new ones to enter. If price falls below average variable cost,

 then firms suspend operations or even exit from the market.

 Reality is very different. Firms invest in projects that they expect to yield a

 return in excess of a required or "hurdle" rate. Observers of business practice

 find that such hurdle rates are three or four times the cost of capital.' In other
 words, firms do not invest until price rises substantially above long run average

 cost. The hurdle rate appropriate for investment with systematic risk will

 exceed the riskless rate, but it seems hard to justify the large discrepancies

 observed. On the downside, firms stay in business for lengthy periods while

 absorbing operating losses, and price can fall substantially below average

 variable cost without inducing disinvestment or exit. Many U.S. farmers in the

 mid-1980s were in this situation.'

 ISummers (1987, p. 300) found hurdle rates ranging from 8 to 30 percent, with a median of 15 and
 a mean of 17 percent. The cost of riskless capital was much lower; allowing for the deductibility of

 interest expenses, the nominal interest rate was 4 percent, and the real rate was close to zero.

 Summers' concern was the discount rate applied to depreciation allowances. But he found that

 almost all firms used the same rate to discount all components of cash flow. See also Dertouzas et al.

 (1990, p. 61).

 2In 1983, average net income per farm operator was $6,000. Even if rent and mortgage payments

 on land are excluded from costs on the theory that the land had no alternative use, the figure rises

 * Avinash Dixit is John J. F. Sherrerd '52 University Professor of Economics, Princeton

 University, Princeton, New Jersey.
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 108 Journal of Economic Perspectives

 An example that combines upside and downside aspects is the very slow

 response of U.S. imports to the exchange rate. From 1980 to the end of 1984,

 the real value of the U.S. dollar increased by about 50 percent. The competitive

 advantage of foreign firms in the U.S. market rose dramatically. But import

 volume began its persistent rise only at the start of 1983: a lag far longer than

 the year or 18 months previously believed to be typical. In the first quarter of

 1985 the dollar started to fall, and by the end of 1987 was almost back to its

 1978 level. But import volume did not decrease for another two years; if

 anything it rose a little (Krugman and Baldwin, 1987, Figures 1 and 2). Once

 established in the U.S. market, foreign firms were very slow to scale down or

 shut down their export operations when the exchange rate moved unfavorably.

 Some recent developments in the theory of investment under uncertainty

 have offered an interesting new explanation of these phenomena. This new

 approach suggests that textbook pictures of the dynamics of a competitive

 industry need substantial redrawing. More generally, it says that a great deal of

 inertia is optimal when dynamic decisions are being made in an uncertain

 environment. It builds on an interesting analogy between real investments and

 options in financial markets. The main merit of this approach is that it brings

 many disparate phenomena into a common framework. Most intriguingly, it

 even sheds new light on some non-economic matters. In this article I shall give

 a brief outline of the new view, and discuss several of its applications.

 Timing of Investment and the Value of Waiting

 Three features are common to most investment decisions, and they com-

 bine to yield effects like those in the examples above. First, almost as a matter of

 definition, an investment entails some sunk cost, an expenditure that cannot be

 recouped if the action is reversed at a later date. Second, the economic

 environment has ongoing uncertainty, and information arrives gradually. Fi-

 nally, an investment opportunity does not generally disappear if not taken

 immediately; the decision is not only whether to invest, but also when to invest.

 The qualitative implication is easily stated. When these three conditions are

 present, waiting has positive value. In the evolving environment, time brings

 more information about the future prospects of the project. As long as the

 opportunity to invest remains available, a later decision can be a better one.

 And because there are sunk costs, it does not always pay to take a less perfect

 action now and change it later.

 to only $13,500 (figures from the Statistical Abstract of the United States, 1990). These being national
 averages, there must have been many farming families who were earning much less than the

 opportunity cost of their own labor.
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 Avinash Dixit 109

 Of course, the value of waiting must be set against the sacrifice of current

 profit. If current conditions become sufficiently favorable, one should eventu-

 ally take the action that is optimal according to the current calculation, and not

 wait any longer. But the "trigger" level of currently expected profit that makes

 it optimal to proceed exceeds the Marshallian normal return. Similarly, waiting

 has value when contemplating disinvestment. The Marshallian criterion of

 failing to cover variable cost should not trigger abandonment; the correct point

 is a critical negative level of operating profit.

 This view of investment under uncertainty can be summarized as "a theory

 of optimal inertia," or "a benevolent tyranny of the status quo." It says that

 firms that refuse to invest even when the currently available rates of return are

 far in excess of the cost of capital may be optimally waiting to be surer that this

 state of affairs is not transitory. Likewise, farmers who carry large losses may be

 rationally keeping their operation alive on the chance that the future may be

 brighter.

 The verbal argument above is purely qualitative; it says that waiting has a

 positive value, but not whether this value is typically large enough to have a

 significant impact on investment and disinvestment decisions. In the subse-

 quent sections I shall show in some illustrative calculations that the effect can be

 very large indeed, and therefore merits serious attention.

 The Example of a Discrete Investment Project

 My first illustrative example is the simplest, namely a single discrete

 investment project. Suppose the project can be launched by incurring a sunk

 cost K, and once launched, lasts forever. Let R denote its flow of net operating

 revenues per unit time.

 This is where the uncertainty comes in. Future revenues are only imper-

 fectly predictable from the current observation. The probability distribution of

 future net revenues is determined by the present, but the actual path remains

 uncertain. This probabilistic law of evolution of R can take many forms, but a

 particularly simple specification proves insightful as well as realistic for many

 applications. We suppose that each period, R can either increase or decrease

 by a fixed percentage. The probabilities of increase and decrease need not be

 equal, so there can be a positive or a negative trend to R. In other words, R

 follows a random walk, whose steps are of equal proportions, that is, they form

 a geometric series. If the time period for each step of R is very short, then the

 distribution of the logarithm of R, at a future time t, given the initial Ro at
 time 0, is approximately normal. Then, R is said to follow a proportional or

 geometric Brownian motion.

 Many economic time-series-exchange rates, prices of natural resources,

 prices of common stocks, and others-can to a reasonable first approximation

 be described as geometric random walks or Brownian motions. That makes the
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 110 Journal of Economic Perspectives

 assumption particularly natural for this illustrative example.3 Thus, the discrete

 project might be an oil well, whose future revenues are random as the price of

 oil fluctuates. Or it may be a manufacturing plant whose output is exported, so

 the future revenues fluctuate with the exchange rate. Purely for expository

 simplicity, I shall suppose that the trend rate of growth of R is zero. This does

 not affect the qualitative results, and I shall mention how a non-zero trend

 affects the quantitative ones.4

 The Effect of Waiting

 Suppose the aim is to maximize the expected (in the statistical sense of the

 mean or probability-weighted average) present value of profits. Let future

 revenues be discounted at a positive rate p > 0, the opportunity cost of riskless

 capital specified exogenously. Then, given a current level R of revenues, the

 expected present value of the discounted future stream of revenues is R/p.

 Observe that by focussing on the expected value of profits, I am making an

 implicit assumption that the investor is risk-neutral. The purpose of this

 assumption is to show that the value of waiting has nothing to do with

 risk-aversion. It is rather an intertemporal trade-off of present risk v. future

 risk.5

 The textbook or Marshallian criterion would be to invest when the project

 has positive expected net worth (present value net of the sunk cost K), that is,

 when R/p > K. The borderline level M of the current revenue flow that would

 make one indifferent between investing and not investing is given by

 M = pK. (1)

 The textbook recommends investment when the current revenue flow exceeds

 M; I shall call M the "Marshallian investment trigger."

 But this criterion comes from thinking that the choice is between acting

 right now to get R/p - K, and not investing at all, which gets 0. What happens

 if the true menu of choices is wider, and waiting for a while and then

 reassessing the decision is also possible? Now at the Marshallian trigger, waiting

 is better than either investing right away or not investing at all. To see this,

 consider a particular alternative strategy: Wait for a fixed interval of time, and

 observe the value of R, say R1, at its end. If R1 > M invest at once, otherwise

 3The qualitative results are valid much more generally. What we need is "positive persistence" in
 R: a higher value today should shift the distribution of future values to the right. An additional

 Appendix, available by writing to the author, explains this point. Most investment problems will

 have this feature. It might fail when uncertainty is due to shocks to intertemporal preferences: a

 higher demand today then signals lower demand in the future.

 4The appendixes develop the analysis with a general trend ,u. See also McDonald and Siegel
 (1986), and Pindyck (1988).

 5In fact, the case of a risk-averse investor can be treated using similar techniques and yields similar
 results. We need only modify p to take into account the project's systematic risk (beta); see Pindyck

 (1991).
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 Investment and Hysteresis 111

 never invest. (Of course, the alternative strategy is not itself optimal, but by

 showing it does better, we prove that the Marshallian criterion is not optimal

 when waiting is possible.) If the return at the end of the fixed waiting time

 exceeds the Marshallian trigger (R1 > M), then the net worth of the investment

 must be positive at that time, and remains positive when discounted back to the

 starting time. If the expected return is less than the Marshallian trigger

 (R1 < M), the net worth is zero because we do not invest. The probability-
 weighted average of a positive number and zero is of course positive. Therefore

 the proposed alternative strategy does better than either investing right away

 or not investing at all, each of which yields zero when the current revenue is

 exactly at the Marshallian trigger. By continuity, waiting remains better than

 investing for initial values of R slightly in excess of M.

 The point is that waiting for a certain amount of time enables an investor

 to avoid the downside risk in revenues over that interval, while realizing the

 upside potential. This selective reduction in risk over time generates a positive

 value of waiting. On the other side, the cost of waiting is the sacrifice of the

 profit flow over the period of waiting. Therefore, if the current net revenue

 flow reaches a sufficiently high level, it won't pay to wait any longer. There is

 still a critical or trigger level, say H, such that investment is optimal when the

 current revenue exceeds it. But this H is larger than the Marshallian level M.

 We can make the argument more precise, and explore what parameters

 determine the size of the difference between the optimal decision to wait and

 the Marshallian criterion for investment. As a first step, we see how the net

 worth of a project might be changed by a strategy of waiting until the expected

 revenue exceeds an exogenously given investment trigger H. This will furnish

 the tools for explaining how the investment trigger H itself should be optimally

 chosen.6 Figure 1 illustrates the calculation.

 The upward-sloping straight line labelled iYi2 in Figure 1 represents the
 value to be received from investing immediately; that is, R/p - K. If the return

 R is zero, then the project would lose K. Otherwise, the value of this function

 increases with slope I/p as the return R increases.

 Now consider how the expected return from this project changes if the

 rule is applied that investment will occur only if the expected return R exceeds

 a trigger H. If the trigger is surpassed, then the investment project takes place,

 and the return is given by the thickly drawn portion of the line i1i2 above the
 point h, where R = H. If the expected return is equal to the trigger, then

 the firm will be indifferent between waiting and investing immediately. If the

 expected return is less than the trigger, R < H, the rule tells us to wait. But

 there is a positive probability that at some future time R will climb above H

 and generate a positive net worth. Of course we rationally anticipate this

 6This whole procedure is very rough and heuristic, and is adopted for ease of exposition. Readers
 who wish to see more rigorous arguments that the optimal policy takes this "trigger level" form,

 and fuller explanations of the subsequent mathematics, should read the additional Appendix,

 available by writing to the author, and the references cited there.
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 Figure I

 Values of Waiting and Investing

 v

 w, /<~~~~~~~~~w

 /Iz

 / ~~~H R

 possibility, so the net worth is positive even now. The value is merely the value

 of waiting, or that of the opportunity or "option" to invest at some future time.7
 Calculation of this option value needs some mathematical reasoning, which

 I relegate to the Appendix. Here is some intuition for its general form. The

 option value should approach zero if the current R is very low, because then

 the event of R climbing to H is unlikely except in the far future, and the

 discounted present value of that is quite small. Successively higher current

 values of R should raise the value of waiting increasingly rapidly. For R close

 to H but just below it, the probability of reaching H in the very near future

 approaches one, and the option value approaches the net worth of a live

 project at H. The result is shown as the convex curve labelled w1w2 in Figure 1,
 starting at the origin and meeting the straight line i1i2 at the point h. Only the

 7I have assumed without stating so explicitly that the opportunity to invest is owned by a single

 firm or individual. If it is freely available to any of the usual infinity of potential entrants waiting in

 the wings, it cannot have a positive value. See the sections "Extensions and Qualifications" and

 "Competltive Industry Dynamics" later in this article.
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 Avinash Dixit 113

 thickly drawn portion w,h to the left of H gives the value of waiting; beyond h
 investment takes place and the value of waiting is irrelevant.

 The overall value of the opportunity to invest is then given by the thick

 curve w,h and the thick line hi2 taken together. The algebra of the Appendix
 gives the functional forms of these curves as

 ( R) (BR K if R > H (2)
 Rlp- K if R?>H.

 The upper formula is the value of waiting (the convex curve W1W2 of Figure 1).
 The expression involves two constants, B and ,3, whose meaning will be

 explained soon. For now, just note that B is positive and ,3 exceeds unity. The
 lower expression is the value of investing (the straight line i1i2 of Figure 1). The
 thickly drawn portions correspond to the value of waiting or investing in its
 range of validity, and the light portions show the continuation of the separate
 parts into the irrelevant regions. At H there is indifference, so the two
 expressions are equal.

 There are two new terms in the first expression, showing the value of

 waiting, that require explanation. The power ,3 depends on the discount rate p,
 and on the volatility of the revenue, which is measured by the variance ar2 of
 the logarithm of R per unit time. The Appendix shows that

 ,B I + 2 1. (3)

 B is a multiplicative constant. It is determined by the condition that the two
 expressions for net worth V(R) must be equal when R equals H. Therefore
 BHp = H/p - K. Or to rephrase in a formulation which will be useful presently,

 H/p = K + BHO. (4)

 The intuitive meaning of B will be explored more in the next section.

 The Optimal Policy

 In the previous example, the investment trigger H was exogenously given.
 Now consider how the trigger should optimally be chosen. If the trigger value

 H is increased slightly above its value in Figure 1, that shifts the junction point
 h between the thickly drawn curve and line to the right. This can only be

 accomplished by raising the whole curve W1W2 representing the value of
 waiting. In equation (2), this corresponds to raising B in the upper formula.

 To maximize value, such increase should be pushed as far as possible, that
 is, until the graph of the value of waiting-the curved line given by BR0-
 becomes tangential to that of the straight-line return of investing immediately:
 Rp- K. Thus, the choice of an optimal trigger H is defined by the
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 Figure 2

 Optimal Investment Policy

 v
 w2

 WI~~~~~~~~~~~~~~~~~I

 /M ~~~H R

 requirement that the graphs of the two formulas of the expression (2) should

 meet tangentially at H. This is called the "smooth pasting" condition.

 Figure 2 shows the optimum H. The corresponding V(R) function is

 drawn thicker, with the convex curve w,h of the value of waiting to the left of
 H, and the straight line hi2 of the net worth of the project to the right of that

 point. The Marshallian trigger M is where the value of investing just becomes

 positive, that is, where the straight line i1i2 crosses the horizontal axis. The

 optimum trigger H is obviously to the right of this.

 The observant reader will have noted that the curve BRO lies above the
 line R/p - K to the right of H, and wondered if this means that investment is

 optimal only at the point H, and waiting again the preferred policy for higher

 values of R. The answer is no. The point is that the expression BR ceases to

 have a valid interpretation as the value of waiting when R > H. Otherwise it

 would create a pure speculative bubble; the value of waiting would be high

 because the prospect of reaching an even higher R would offer an even higher

 value of waiting, with no actual investment ever in sight. In the same way,
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 Investment and Hysteresis 115

 increasing B even farther to lift the curve BRO clean above the line R/p - K is
 not a meaningful policy.

 A sharper intuition into the relationship between the Marshallian and the

 optimal triggers for investment can be gleaned with some algebra. The smooth

 pasting condition equates the slopes of the value of waiting and the value of

 investing at the optimal trigger H. Therefore we differentiate each formula in

 (2) with respect to R, evaluate the derivatives at H, and equate the two

 expressions. This gives

 O3BH-' -= I/p. (5)

 Then use equations (4) and (5) to solve for H and eliminate B. We find that the

 optimal H is given by

 pK. (6)

 Remember the Marshallian investment trigger M was to invest when M = pK.

 Therefore we have a very simple relation between the Marshallian and the

 optimal triggers: the latter is ,3/(,3 - 1) times the former.
 We can express the optimal trigger in a way that parallels the Marshallian

 formula even more closely. Define a new discount or hurdle rate p' that

 incorporates a correction for the value of waiting. Once this correction has been

 made, one can proceed in the Marshallian way; the project is worth undertak-

 ing when its net worth calculated using the corrected discount rate becomes

 positive. For this, we need H = p'K, or

 _ = 1P. (7)

 This formulation will be applied in the next section to develop some estimates

 of the potential difference between the optimal and Marshallian trigger.

 The reader should also be able to make greater intuitive sense of equation

 (4) at this point. Instead of correcting the discount rate for the value of waiting,
 we could correct the cost of investment. Immediate action has an opportunity

 cost, namely loss of the option to wait. This is valued at BR , and we must add

 it to the actual cost of investment K to get the full cost of immediate action.

 Then such action is justified when the benefit R/p exceeds this full cost. As (4)

 shows, this happens when the current revenue R reaches the trigger H.

 Readers who happen to be familiar with elementary concepts of financial

 options-from theoretical study or their own practical investment experience

 -can sharpen their intuition by exploiting an analogy with financial options.8

 8Other interested readers can find the basic concepts explained in the Symposium on Arbitrage in
 the Fall 1987 issue of this journal.
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 The opportunity to make a real investment is akin to an American call

 option-a right but not an obligation to buy a stock at a preset price called the

 strike price or exercise price. For the real investment project I am considering,

 the exercise price is the sunk cost K of the project. If the option is exercised,

 the firm acquires ownership of a stock that pays a dividend stream of expected

 present value R/p. The net worth, R/p - K, is called the "intrinsic value" of

 the option. But exercising the option at the instant its intrinsic value becomes

 positive is not optimal, because the option also has a value of waiting, called the

 "holding premium" or "time value." One should wait until the holding pre-

 mium falls to zero. The "smooth pasting" condition that helps determine the

 optimal point of exercise has long been known in the theory of financial

 options. In fact, option pricing theory can claim credit for developing this

 condition that is now standard in the general theory of control of Brownian

 motion (Merton, 1973, fn. 60).9

 The Importance of Option Values

 Is the difference between the Marshallian trigger M and the optimal

 trigger H, or equivalently, the difference between the conventional discount

 rate p and the modified discount rate p', quantitatively so large that economists

 should alter our orthodox views on investment and rewrite our textbooks? Of

 course, the answer depends on the parameters. If the uncertainty is low, there

 can be only little value in waiting. If the uncertainty is high, on the other hand,

 setting a high trigger before taking action may avoid some very bad outcomes.

 If the discount rate is low, the future is valued relatively more and options that

 help avoid bad future outcomes become more valuable. Here are some sample

 calculations to show that for plausible parameter values the effect can be very

 large indeed.

 For export projects whose revenues fluctuate with exchange rates, a coef-

 ficient of variation of 10 percent over one year fits the recent experience of

 exchange rate volatility (Frankel and Meese, 1987). If the project is an oil well
 or a copper mine, a much higher figure of 25 to 40 percent per year is closer to

 the experience of fluctuations in the prices of these resources (Brennan and

 Schwartz, 1985). Therefore, let us use a value in this range, say u = 0.2, as a
 base case. Suppose the discount rate is 5 percent per year. Then we find

 ,l = 2.15, and the multiple f3/(,3 - 1) equals 1.86. Thus current revenues have
 to rise to nearly double the level that ensures a positive net worth before

 waiting ceases to be optimal. Using the alternative method of adjusting the

 discount rate, we find p' = 9.3 percent, which is quite a big correction to p =

 5 percent.

 9For experts in financial economics, I should clarify that the project of my example is an option
 with an infinite expiry date; the finite-horizon case is treated by McDonald and Siegel (1986). Also,
 the stock (project) pays dividend (revenue flow); that is why exercise before the expiry date can be

 optimal.
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 Avinash Dixit 117

 For a more general sense of how the underlying parameters affect ,3 and

 p', note from the definition of ,3 given earlier in equation (3) that a lower

 discount rate p or a higher standard deviation o, of the revenues yield a lower

 ,B. In turn, a smaller 13 means a larger factor 37/(,3 - 1), and therefore the
 longer it is optimal to wait.

 It is intuitively evident that when the future is less heavily discounted, the

 value of waiting for more information goes up. As an example, if in the above

 calculation we reduce p to 2 percent, which is closer to historic riskless real

 rates of interest, then ,3 drops to 1.62, and the multiple 37/(,3 - 1) rises to 2.61.
 It is equally intuitive that greater uncertainty means a higher value of waiting.

 If in the numerical example we raise of to 0.4 (while keeping p at 5 percent),

 then ,3 = 1.43, p' = 16.6 percent and H is 3.32 times M.

 Two limiting cases are worth mention. If the future is very heavily dis-

 counted (p large) or very certain (o- small), then ,3 goes to infinity and

 ,3/(,3 - 1) goes to 1. Option values become unimportant in this limit and the
 Marshallian criterion applies. In the opposite extreme, as p goes to 0 or o' goes

 to infinity, ,3 goes to 1 and ,3/(,3 - 1) goes to infinity; Marshallian analysis
 becomes totally misleading.'0

 To sum up, even when the cost of capital is as low as 5 percent per year,

 the value of waiting can quite easily lead to adjusted hurdle rates of 10 to 15

 percent. Summers' (1987) finding of median hurdle rates of 15 percent is no

 longer a puzzle.

 Extensions and Qualifications

 The above example of a discrete investment project was deliberately

 oversimplified to highlight the value of waiting. In practical applications, of

 course, various complications and countervailing considerations must be recog-

 nized. Here I shall briefly outline some important matters of this kind.

 The example can readily be generalized in many respects, and the essential

 lesson of the importance of the value of waiting survives unscathed. We can

 allow the scale of the initial investment to be a matter of choice, introduce some

 101 have set the trend growth rate of revenues at zero in the above analysis, but this is a good place
 to mention its twofold effect. On the one hand, a faster expected rate of future revenue growth

 makes investment more attractive. If the trend rate of growth is ,u, then the discounted present

 value of future revenues starting at R is R/(p - /i), so the Marshallian trigger is M = (p- )K.
 On the other, the consequences of a given difference in the current revenue level become

 magnified as time goes on. Therefore the value of avoiding a given amount of downside risk

 increases, and with it the value of waiting. The adjusted discount rate p' is explicitly derived in the

 Appendix. The adjusted discount rate is given by p' - , = [,f3/(, 1 - l ), and the optimal
 trigger is H = (p' - tL)K. Now .t also affects 1, and an increase in . lowers 13; this is the waiting
 effect. Numerical calculations show that the waiting effect generally wins. For example, if we keep

 the basic values p = 5 percent and o- = 0.2, but raise the trend growth rate from zero to 2 percent

 per year, then /3 falls from 2.15 to 1.58, and p' rises from 9.3 to 13.6 percent per year, and H is 3.9

 times M.
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 118 Journal of Economic Perspectives

 cost to varying this scale, and also allow a choice of the level of operation at
 each instant by varying labor or other inputs. If the net revenues can some-
 times become negative, we can allow temporary suspension or abandonment.
 This last extension raises some interesting new issues, and is considered in the
 next section.

 The assumption that net revenues follow a Brownian motion embodies a
 restriction: uncertainty is roughly symmetric around the trend. In practice,

 distributions of future outcomes are sometimes quite lopsided. Therefore, we
 should know what they do to investment decisions.

 Bernanke (1983) found the answer and called it the bad news principle: "of
 possible future outcomes, only the unfavorable ones have a bearing on the
 current propensity to undertake a given project." In other words, the downside
 risk is the primary force governing optimal investment decisions when waiting
 is possible. To be more precise, the total upside probability matters, but not the
 shape of the distribution of revenues to the right of the optimal trigger. The
 technical proof of this is in an additional Appendix available from the author.
 But the intuition is not difficult. Remember that when we decide whether to

 proceed or to wait a little more, what is at stake is not the uncertainty per se,
 but how it will resolve in the next small amount of time; that is, the tradeoff
 between current and future risks. Most of the upside potential remains whether

 action occurs right away, or after a small delay. The possibility of a downturn,

 and the ability to avoid an action that could thereby prove to be a mistake, is
 what makes waiting valuable. That is why the downside risk matters most when
 deciding whether to wait.

 Let us turn to some other issues that were left out of the model. In the

 simple example, waiting had a positive value because it allowed further obser-
 vations of the revenue fluctuations. More generally, the point is that the
 passage of time reveals more information. In reality there are other forces that
 also bear on the issue of whether to wait.

 First, there may be a race to seize a scarce opportunity. In the simple
 example, the opportunity to invest was assigned to just one firm. But if it is

 available to any of several firms, then waiting is no longer feasible. The option
 to wait will expire because some competitor will seize the opportunity. Then

 some firm will invest as soon as the expected present value crosses zero, and
 the Marshallian trigger will be valid.

 But when there are several firms, a more interesting scenario is that more

 than one firm can invest. When they do so, industry supply increases and price

 falls along the demand curve. This, or the expectation of such price fall, places
 a limit on the equilibrium investment. In other words, we have a competitive
 industry in a dynamic environment. This is the natural setting in which to

 explore the validity of the Marshallian story of entry at long run average cost
 and exit at short run variable cost. I consider this in the later section titled

 "Competitive Industry Dynamics." The outcome of the correct melding of each
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 Investment and Hysteresis 119

 firm's choice of waiting or investing into a dynamic equilibrium process turns

 out to be quite far from the Marshallian picture.

 Second, there are strategic situations where making the first move has a

 commitment value. The role of investment in altering the outcome of a

 Cournot oligopoly is well known; see Dixit (1980), and a richer dynamic version

 in Fudenberg and Tirole (1983). In practice, strategic considerations may call

 for early investment at the same time that information aspects suggest waiting;

 the optimal choice then has to balance the two.

 Finally, when there are several firms, their information may differ. Then

 each firm has to consider how it can infer other firms' information from their

 actions, and in turn how its information may leak to others through its actions.

 For example, suppose each firm independently evaluates the prospects of a

 project, and the evaluation is subject to error. If one firm observes that no

 other firm has invested, it infers that their evaluations were insufficiently

 favorable, and adjusts its own evaluation downward. When all firms do this,

 they may all decide to wait. Conversely, once one firm invests, others conclude

 that its evaluation must have been very strongly favorable, and adjust their own

 judgments upward. Therefore the first firm may quickly be followed by others,

 resulting in a bunching of investment. For discussions of such matters, see

 Stiglitz (1989) and Leahy (1990, Chapter 3).

 Abandonment and Hysteresis

 In the simple example of the previous section, the net revenue flow from

 the project was always positive; therefore, there was no reason to suspend or

 abandon a project once it was launched. In reality, we see firms suffering

 operating losses. To capture this, let R now be gross revenue, and introduce a

 flow cost C of operation. Let R follow a geometric Brownian motion. For

 simplicity of exposition, suppose R has zero trend, and that C is constant. This

 does not alter the qualitative results; the former assumption is relaxed in the

 Appendix.

 If temporary suspension of operation is possible, this will be done when-

 ever R falls below C. This looks like the textbook Marshallian theory: disinvest-

 ment should take place when operating losses are being made. But suspension

 is not disinvestment. Most typically, if a firm ceases operation, it cannot restart

 at will without incurring some further cost. It is as if the machinery rusts when

 unused. To highlight this feature, I shall suppose that rusting is total and

 immediate. Then, suspension is the same as outright abandonment. If one ever

 wants to restart in the future, the whole sunk cost K must be incurred over

 again. I I

 I For an analysis of the case where temporary suspension is possible, see McDonald and Siegel
 (1985).
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 The possibility of waiting now influences the decision to abandon, just as it

 affected the decision to invest. The gross revenue R has to fall some way below

 the operating cost C before abandonment becomes optimal. The intuition is

 similar to that for investment. The investor is willing to tolerate some operating

 loss to keep alive the option of future profitable operation should R turn

 upward. Only when the current loss exceeds the value of the option does it pay

 to abandon. Let L be the critical low value of revenue that just triggers

 abandonment when option value is taken into account properly. Then our

 intuitive reasoning says that L must be less than C.

 The expected present value of operating profits when the current revenue

 flow is R equals (R - C)/p. The Marshallian investment criterion would tell

 the firm to go ahead when this exceeds K, that is, when current revenue

 exceeds the trigger level M = C + pK. The right-hand side is just Marshall's

 long run cost, being the sum of the variable cost and the interest on the sunk

 cost. When the option value of waiting to invest is recognized, the trigger H is

 higher. Thus we have the chain of inequalities

 L < C < C + pK < H. (8)

 In the earlier simple example, we could explicitly show the solution for the

 investment trigger H. But here, L and H are determined by a more compli-

 cated system of nonlinear equations that does not permit a closed-form solu-

 tion. The derivation of this system is sketched in the Appendix; more details are

 in Dixit (1989b). Here I shall merely mention some numerical results.

 First, let us estimate the quantitative significance of the option values. Let

 p = 0.05 and a = 0.2 as in the base case of the previous section. Choose units

 of account so that C = 1, and suppose that K = 2. Then the normal return to

 capital or the interest on sunk costs is pK = 0.1. The long run average cost, or

 the Marshallian investment trigger, is M = 1.1. With these values we find

 L = 0.72 and H = 1.62. At the truly optimal entry trigger H, the operating

 profit is 0.62, which is more than six times the normal return to capital. At the

 exit trigger L, losses equal to nearly a third of variable costs are being

 sustained. Once again the departure from Marshallian theory is very dramatic

 for quite plausible values of the parameters. Dixit (1989b) considers a wide
 range of parameter values and finds similar results.

 It is important to recognize that the triggers L and H are jointly deter-

 mined by all the parameters of the problem. An increase in the sunk cost K will

 obviously raise the investment trigger H. But it will also lower the abandon-

 ment trigger L; the project will be continued through periods of greater losses

 for the option of keeping alive the larger sunk stake. Conversely, if abandon-

 ment is costly-for example, severance payments to workers or the cost of

 restoring the site of a mine-then the entry trigger is higher; firms are more

 cautious in undertaking a venture they may have to abandon later at a cost.
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 Optimal Inertia

 Sunk costs alone will produce a zone of inaction between the two Marshal-

 lian triggers of the variable cost C and the total cost M = C + pK. If the

 current revenue flow is between these levels, then the optimal policy is to

 maintain the status quo. The project is not launched, but if already active, is not

 canceled.

 But with uncertainty, the zone of inaction that takes option values into

 account is wider, expanding to between the triggers L and H. The numerical

 calculations show how big the gap can be. In the example just above, the

 Marshallian range of inertia extends from 1 to 1.1, while the optimal range

 goes from 0.72 to 1.62, which is quite a dramatic difference. Other plausible

 values of the parameters p, oa and so on have equally substantial effects.

 Dynamic economic choices should exhibit much greater inertia when there is

 uncertainty.

 This has potentially important implications for macroeconomics. Small

 nominal or real frictions can produce even larger rigidities than those sug-

 gested by models that ignore evolving information, for example the "menu

 cost" models of Mankiw (1985) and Akerlof and Yellen (1985) or the "portfolio"
 model of Greenwald and Stiglitz (1989).

 The implications for labor markets are also potentially dramatic. Tangible

 costs of hiring and firing workers are significant in almost all occupations, and

 quite large in some countries. If wages are sticky, then the response of

 employment to output demand fluctuations will be slower when employers,

 recognizing the option value of the status quo, hoard labor in downturns, and

 are slow to hire in upturns. Alternatively, very large wage fluctuations will be

 needed to maintain classical full employment.

 If wages are sticky and employment responds slowly, the marginal product

 of labor may go quite some way above the wage without any hiring taking

 place, and below it without any firing (Bentolila and Bertola, 1990). Contrary

 to conventional theory, the wage in any occupation is not constantly equated to

 opportunity cost of labor. Economists usually dismiss the popular concern

 about a "loss of jobs" by invoking just such an equation: the person out of a job

 only ceases to earn in this occupation just about what he or she could have

 earned elsewhere. The view presented here suggests that the popular concern

 may have more justification.

 Hysteresis

 Picture a particular path of the stochastic evolution of net revenues through

 time. Let the numerical values be as above. Suppose the initial R equals 1, and

 it starts to rise. It crosses the Marshallian trigger of 1.1, but no investment takes

 place. Finally it rises above 1.62, and the project is launched. Then the revenue

 starts to fall, and comes back all the way down to 1. But this does not justify

 abandonment. The driving force behind the investment decision, namely the

 currently observed revenue, has been restored to its initial level. But its
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 meandering along the way has left its mark, namely an active project where

 there was none before.

 Similar effects have long been known in physics and other sciences. The

 closest for our purpose comes from electromagnetism. Take an iron bar and

 loop an insulated wire around it. Pass an electric current through the wire; the

 iron will become magnetized. Now switch the current off. The magnetism is not

 completely lost; some residual effect remains. The cause (the current) was

 temporary, but left some lasting effect (the magnetized bar). This phenomenon

 is called hysteresis, and by analogy the failure of investment decisions to reverse

 themselves when the underlying causes are fully reversed can be called eco-

 nomic hysteresis.

 If some electric current is passed through the wire in the opposite direc-

 tion, the residual magnetism will be lost. With a strong enough opposing

 current, magnetism will be induced in the reverse direction. Similarly, if our

 project's current revenue falls even more, it will eventually be abandoned.

 Then a subsequent rise back to 1 in revenues will not restore the project; there

 is hysteresis in the reverse direction, too.

 Sunk costs alone can cause hysteresis in textbook Marshallian analysis, as R

 moves in and out of the Marshallian zone of inaction between variable and total

 costs. But if such fluctuations are occurring, it behooves us to let the firm have

 rational expectations about its stochastic environment. When that is done, the

 uncertainty magnifies the effect quite dramatically; very large changes in R in

 the opposite direction are needed to reverse the effects of a temporary move in

 either direction.

 In this light, the slowness of the U.S. imports to respond to the dollar

 appreciation of the early 1980s, and the even greater slowness to improve

 despite the subsequent fall back to the 1980 level, become quite understandable

 and even intuitive. Krugman (1989, Chapter 2) and Dixit (1989a) discuss this

 case in greater detail.

 U.S. v.s. Japan

 Observers of America's relative decline in manufacturing-for example,

 Dertouzas et al. (1990, pp. 61-65)-attribute part of the problem to the

 dominance of short-term thinking among U.S. managers, which causes them to

 apply high "hurdle" rates when considering investment decisions. The expla-

 nations given for this short-term emphasis include fear of hostile takeovers,

 high mobility of managers, and various kinds of uncertainty including that in

 the government's taxation, regulation, and trade policies. Our analysis of the

 effect of option values on investment suggests that uncertainty is even more

 important than previously realized. It can explain much or even all of the gap

 between typical hurdle rates and the cost of capital. The high rates might

 actually be optimal responses to uncertainty.

 But the explanation is inadequate as it stands. The option value effect

 raises the optimal entry point, but by the same token it lowers the optimal exit
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 point. If American firms are more hesitant to invest or enter new ventures

 because of uncertainty, they should be more ready to ride out bad periods. But

 the same observers find exactly the opposite tendency. In many sectors includ-

 ing color TVs, VCRs, and semiconductors, American firms have abandoned

 the field after short periods of losses, while Japanese firms hang in there

 (Dertouzas et al., 1990, especially Industry Studies C and F).

 A common explanation of Japanese firms' willingness to absorb losses is the

 lifetime employment system. This makes labor a quasi-fixed factor, and reduces

 the variable component of cost. Conventional theory points out that lower

 variable costs mean that revenues must fall farther to cause abandonment. But

 by the same token, these larger sunk costs of Japanese firms should make them

 more reluctant investors! Reality is the opposite; they are particularly aggres-

 sive investors.

 A better explanation may be found in Bernanke's bad news principle.

 Suppose the uncertainty facing Japanese firms is more lopsided; they are

 protected from the downside risk because the government supports them in

 various ways, including cartelization to avoid destructive competition in reces-

 sions. Then the value of waiting to invest, which is governed mainly by the

 downside risk, is quite small, and they invest more aggressively. For disinvest-

 ment, of course, the argument turns around and becomes the good news

 principle. The option value of keeping the operation alive is governed primar-

 ily by the upside potential, which is relatively more important for Japanese

 firms, and induces them to ride out bad periods that would drive American

 firms into dissolution.

 This analysis is not intended to be comprehensive, but it does allow some

 conditional statements on policy. If the aim is to induce quicker new investment

 or entry of firms, it is especially important to reduce the downside risk. If the

 aim is to prevent disinvestment or exit, it is especially important to improve the

 upside potential.

 Competitive Industry Dynamics

 The analysis so far has dealt with a single project or a single firm, taking its

 revenues as exogenously determined. Now consider what happens to an indus-

 try populated by many active price-taking firms, and identical potential en-

 trants. Each takes the price as evolving exogenously over time, albeit with some

 uncertainty. But the actions of all of them in turn determine the price path.

 What will be the overall equilibrium of this process?

 Consider a simple structure that serves to bring out the essential points.

 The source of the uncertainty must now be something exogenous to all the

 firms; I shall suppose this to be a demand shock. Specifically, suppose an

 inverse demand curve for the industry, expressing price P as a function of

 quantity Q and the shock to demand X; assume this takes the algebraic form
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 Figure 3

 Competitive Industry Dynamics

 p

 H

 M~~~~~~~~~~~~~~

 L

 D3

 Q

 P = XD(Q). Each firm has a very Marshallian technology. It becomes active by
 making an initial sunk investment of K. While active, it has a standard rising

 short run marginal cost curve that becomes its supply curve. Temporary

 suspension of operations is again assumed away. The industry supply curve at

 an instant is found by the usual horizontal summation of the supply curves of

 all active firms. Write C for the minimum short run average variable cost and

 M for the minimum long run average cost.

 Figure 3 enables us to trace out the dynamics of the industry. Suppose the

 firms that are originally active generate the industry supply curve S1. Fluctua-

 tions in the demand shock variable X will induce movements along SI, leading
 to fluctuations in the price P. Suppose new entry is triggered when the price

 rises to the critical level H. Along SI, this happens when demand rises to the
 position D1. When some new firms enter, the supply curve shifts to the right;

 let S2 be its new position. The price falls along the demand curve D1.
 Thereafter, new demand shocks will cause movements along S2, until either the

 critical high price H is reached again, triggering more entry, or a critical low

 price L is reached, triggering some exit. In the figure, the former occurs if the

 demand curve rises to the position D2, and the latter if the demand curve falls

 to the position D3. For the whole range of demand curves between these

 extremes, the number of firms stays unchanged and the price and quantity
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 fluctuate with the shocks to demand. If demand hits the upper limit, further

 entry shifts the supply curve to the right of S2; if it hits the lower limit, the

 supply curve shifts to the left to a position like S3. The process then goes on.12

 Consider the picture from the perspective of a potential firm. It knows that

 new entry will prevent the price from ever rising above H, exit will stop it from

 falling below L, and within this range the price will fluctuate as demand shocks

 evolve. Given this price process, it must choose its own entry and exit strategies,

 which will consist of an entry trigger H' and an exit trigger L'. For the

 industry's equilibrium with rational expectations and identical firms, the entry

 and exit triggers chosen by each firm should be the same as the ceiling and

 floor on the price process that each assumes in arriving at its optimal decision.

 That is, H' = H and L' = L.

 Determining such an equilibrium requires some mathematics (Lippman

 and Rumelt, 1985; Edleson and Osband, 1989; Leahy, 1990; Dixit, 1991b). But

 one important general property is easy to see: the entry trigger will allow

 supernormal profit, and the exit trigger will allow some operating losses. The

 reason is evident when we consider the net worth of a firm contemplating entry

 or exit. Suppose, contrary to the above assertion, that the equilibrium ceiling

 price coincides with the Marshallian long run average cost M. Now, each firm

 knows that new entry will prevent the price from ever rising above this level,

 but adverse demand shocks can drive the price below M from time to time.

 Then each firm expects that the operating profit will never be more than

 normal, but can be less at times. Therefore the expected average return to

 capital must be below normal, and net worth must be negative. Firms will not

 enter under such circumstances. The investment trigger H must exceed the

 long run average cost, to give firms the prospect of periods of supernormal

 returns mixed with periods of subnormal ones. The equilibrium level of H

 must be such as to ensure exactly normal average return, or zero net worth, for

 a potential investor.

 Similarly, if the equilibrium floor price were the Marshallian average

 variable cost C, then firms at this point would see non-negative operating profit

 at all future dates, and positive at some dates. This does not call for exit. The

 equilibrium trigger for exit L must be sufficiently below C to make the

 consequences of staying in, namely operating losses for some periods and

 profits for other periods, average out to exactly zero net worth, and make each

 firm indifferent between staying and leaving.

 The ranking of L, C, M and H in the industry's equilibrium is the same as

 the earlier ranking (8) when there was just one monopoly firm. Therefore we

 12Actually there is a further subtlety when the demand shocks follow Brownian motion. Time being
 continuously variable for this process, a little entry quickly drops the price slightly below H. From

 there, the probability of demand rising to take the price to H again in a short interval is quite high.

 That induces some further entry, and so on. In other words, once the price hits the entry trigger, it

 is quite likely to keep on bouncing close to this level for a while, with gradual entry and increase in

 quantity.
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 should explore the connection between the above reasoning based on zero net

 worth, and the earlier analysis based on the value of waiting. When the entry of

 new firms places a ceiling at H on the price, this cuts off each firm's upside

 profit potential. That reduces the value of investing and waiting alike. In

 equilibrium, the reductions are such that the pure waiting value for each firm is

 zero, as it should be when there is a potential infinity of identical entrants and

 no firm has any scarce privilege. Likewise, the floor L cuts off the downside

 risk, and raises the value of exiting and staying alike. In fact, when the demand

 shock follows a geometric Brownian motion, the changes in the values of

 investing and waiting are equal, and each firm's entry and exit triggers L and

 H are exactly the same as they would have been if it were the only firm in the

 market, and therefore not subject to the ceilings and floors that result from

 other firms' entry and exit (Leahy, 1991).

 Therefore we can take the previous numerical calculations for individual

 firms and apply them to the industry equilibrium. We see that the no-entry-

 no-exit range of prices in a competitive industry is likely to be quite wide.

 Remember that in our base case, the Marshallian range of inaction extended

 from 1 to 1.1, and the one that accounts for option values went from 0.72 to

 1.62. Therefore we are likely to see significant periods of supernormal profits

 with no new entry, and of operating losses without exit, in the course of a

 competitive industry's equilibrium evolution.

 This picture calls for a very fundamental rethinking, particularly in the

 matter of regulation and other industry policies. It is most important to regard

 the equilibrium of an industry as an organic process over time. Drawing

 inferences from snapshots at particular instants can be seriously misleading.

 Suppose we observe such an industry at an instant when the price is

 between the Marshallian long run average cost M and the entry trigger H. We

 see established firms making supernormal profits, but no new entry taking

 place. Given our training in conventional microeconomics or industrial organi-

 zation theory, we suspect the presence of monopoly power or entry barriers.

 We might be inclined to suggest antitrust action. But we would be wrong; the

 process viewed as a whole is fully competitive, and long run expected returns

 are normal.

 Likewise, if the price is below the minimum average variable cost, that

 need not signal predatory dumping by the firms that are making the losses.

 They may merely and rationally be riding out the bad period to keep their

 sunk capital alive.

 Only by observing the evolution of the industry for a long time can we spot

 genuine departures from the competitive norm. Basing policies on snapshots

 can result in harm despite the policy-maker's best intentions. In the picture

 above, temporary large profits are merely due to the swings of demand in a

 competitive industry that permits only normal profit as a long run average. If

 the government tries to reduce these supernormal returns using antitrust

 action or price-ceilings, this merely depresses new entry to suboptimal levels.
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 The resultant reduction of supply can actually raise the long run average price;

 see Dixit (1991c). Similarly, if the government pursues policies to support firms
 in bad periods, firms will anticipate this, leading to additional entry, which will
 aggravate the losses when bad times arrive.

 Non-Economic Applications

 Many personal, social, and political decisions that are not narrowly eco-

 nomic share the features of investment: they are costly to reverse, they must be
 made in an uncertain environment, and their timing is a matter of choice.

 Therefore option values and optimal inertia are significant for them, too.
 Quantification is a lot harder, but useful qualitative lessons can be drawn. I

 share the economist's usual temptation to indulge in amateur sociology, and
 will offer two quick examples.

 The first is a dramatic example of the value of waiting. Hamermesh and

 Soss (1974) offer a Beckerian model of suicide. This involves comparing the
 expected utility of the rest of one's life and a suitable standard of zero. Far from

 being an excessively rational model, this is not rational enough, because it
 leaves out the option value of staying alive. We have seen that exit decisions are

 governed by Bernanke's good news principle: the prospect of an upturn is the
 primary determinant of the option value. As Micawber said in David Copperfield,
 "something will be turning up."

 The second example shows how other considerations may offset the value
 of waiting. Once upon a time in New York City, there lived an Assistant
 Professor of Finance. He and his "spouse-equivalent" had separate rent-
 controlled apartments. Their relationship progressed to a point when the

 woman suggested that they should keep one of the apartments and give up the
 other. He explained to her the importance of keeping options alive: it was

 unlikely that they would split up, but given a positive probability, and so on.
 She took this very badly and ended the relationship.

 Financial economists who hear this story say that it just proves how right
 the man was about option values. But the economics of information offers a

 more convincing explanation. The man misunderstood the situation. This was
 not a decision problem under uncertainty, but a signalling game. The woman

 was unsure how highly he valued her, and it was precisely his willingness to
 undertake the costly irreversible action of giving up the apartment that had
 value as a signal.'3 The man overlooked this, tried to sit on the fence, and fell
 flat on his face.

 '3Barry Nalebuff suggested a more fully game-theoretic resolution: the man knew what game was
 being played, and meant to send the signal that the woman correctly interpreted. But in my
 judgment, if he had wanted to convey such a signal, he could have done so in many other and more
 unambiguous ways.
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 Further Reading

 For readers whose appetite is whetted by this sampling of new ideas on

 investment under uncertainty and their applications, the next stop should be

 Pindyck (1991). He gives a full survey of the literature, to which readers can

 then turn for even more details. Pindyck also develops the analogy with

 financial options particularly thoroughly.

 Readers sufficiently intrigued to attempt their own research in this area

 must make a little investment in techniques. I hope they have learned the basic

 lesson of the story, and will be duly cautious in making this decision. For those

 who decide to go ahead, Dixit (1991a) provides a relatively gentle introduction

 aimed at economists, and gives references to rigorous but harder mathematical

 treatises.

 * I am very grateful to the editors-Carl Shapiro, Joseph Stiglitz, and Timothy
 Taylor-for their excellent suggestions to improve the exposition. I also thank Ben

 Bernanke, Alan Blinder, Gene Grossman, James Hines, Eric Rasmusen, Lars Svensson,

 Timothy Taylor, and Christopher Williams for comments on earlier drafts, and the

 National Science Foundation for financial support under Grant No. SES-8803300.
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 Appendix
 Value of Waiting

 Here I derive the expression for the value of waiting. I shall allow the net

 revenue R to have a non-zero trend growth rate A. The proportional variance
 per unit time is a2. Consider the opportunity to invest as an asset that is held

 for a small interval of time dt while R stays below H. It pays no dividend, but

 its value V(R) changes with R, so it may make a capital gain or loss. The

 change dR in R over this interval is random, with mean and variance

 E[dR] = 1iRdt, Var[dR] = ao2R2dt.

 Then

 E[dR2] = (E[dR])2 + Var[dR] = pYR2 dt2 + o22R2 dt.

 Therefore the expected capital gain is

 E[dV] = V'(R)E[dR] + 1V"(R)E[dR2]

 = V'(R)ARdt + 1V"(R)[ 2R2dt2 + o2R2dt].

 In equilibrium, this should equal the normal return pVdt. Writing this equa-

 tion, dividing by dt, and letting dt go to zero, we get the differential equation

 I c2R2V"( R) + IRV'(R) - pV(R) = 0. (A. 1)

 This is a simple equation of the Cauchy-Euler type. Try a solution of the

 form V(R) = Rx. By substituting in (A.1), x must satisfy the associated quadratic

 equation

 ao2x(x-1) + Ax-p = O. (A.2)

 The left-hand side of (A.2) is negative at x = 0 when p > 0. It is also

 negative when x = 1 provided p > ,A, which we assume to ensure convergence
 of the expected discounted present value of the revenues. Then one root of

 (A.2) is negative, and the other exceeds 1. Call them a and ,B respectively.
 Then the general solution of (A. 1) is

 V(R) = ARa + BR , (A.3)

 where A and B are constants to be determined.

 The value of waiting should go to zero as R goes to zero. Since a is

 negative, we see from (A.3) that we must have A = 0. That leaves V(R) = BR8,
 which is just the expression in equation (2) of the text.
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 In the text I assumed ,u = 0. Then (A.2) becomes

 x(x - 1) = 2p/o2, or (x- = [1 + 8p/u2]/4.

 This immediately gives equation (4) of the text for f3.

 Adjusted Discount Rates

 When ,u # 0, the future revenue stream is expected to grow at rate ,t and
 is discounted back at rate p, so its expected present value is R/(p - pJ). The
 net worth of investing is R/(p - 1i) - K. The Marshallian trigger is
 M = (p - p)K. Otherwise the calculation proceeds as in the text, and the
 optimal trigger H is still f3/(,f - 1) times M. Therefore the adjusted discount
 rate p' is defined by

 P'-A= p_ l - )f

 Investment and Abandonment

 Here it proves convenient to label the value of waiting and the value of a

 live project separately as functions of R; call them VO(R) and V1(R) separately.
 The value of waiting still satisfies the same equality of capital gain and

 normal return, leading to

 Vo(R) = BoR', (A.4)

 where the constant Bo is to be determined. The value of an active project now
 includes a value of the option to abandon. To find it, follow the same steps as
 above, but note that the asset now pays a dividend, namely the revenue flow R.
 The normal return pV1(R) dt should now equal the sum of the dividend R dt
 and the expected capital gain E[dV1]. This leads to the differential equation

 1 -2R2V1f(R) + ItRVI'(R) - pV1(R) + R = 0. (A.5)

 The general solution now includes a term corresponding to a particular
 solution of the non-homogeneous equation. Trying a linear form kR, we find
 that k must equal l/(p - ,u). Therefore

 V1(R) = R/(p - A) + AIRa + B1R8.

 The first term is just the expected present value of revenues; the rest is the

 value of the option to abandon. This option is very far from being exercised if
 R goes to infinity, so the option value should go to zero there. For that we need

 B1 = 0, leaving us with

 V1(R) = R/(p - 1i) + A1R (A.6)
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 At the investment trigger H the increase in value upon investing should
 equal the cost of investing:

 V1(H) - VO(H) = K, (A.7)

 and the two value functions should meet tangentially, leading to the "smooth
 pasting condition"

 V;(H) - Vo(H) = 0. (A.8)

 Similarly, at the abandonment trigger L, we have

 V1(L) - V7(L) = 0; (A.9)

 if there is a direct cost of abandonment such as severance payment, then minus

 that will appear on the right-hand side. There is also the smooth pasting
 condition

 VI'( L) - Vo(L) = 0. (A. 10)

 Substituting the functional forms (A.4) and (A.6) into equations (A.7)-
 (A.10), we get four equations that must be solved simultaneously for the two
 constants A, B and the two triggers H, L. An explicit analytical solution is not
 possible, but some properties of the solution can be obtained by analytical

 methods, see Dixit (1989b). Numerical solution is quite easy using simultaneous
 nonlinear equation solving routines such as the one available in GAUSS.
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