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 Econometrica, Vol. 48, No. 5 (July, 1980)

 THE SOLUTION OF LINEAR DIFFERENCE MODELS UNDER
 RATIONAL EXPECTATIONS

 BY OLIVIER JEAN BLANCHARD AND CHARLES M. KAHN'

 IN HIS SURVEY ON RATIONAL EXPECTATIONS, R. Shiller indicates that the difficulty of
 obtaining explicit solutions for linear difference models under rational expectations may
 have hindered their use [14, p. 27]. The present paper attempts to remedy that problem by
 giving the explicit solution for an important subclass of the model Shiller refers to as the
 general linear difference model.

 Section 1 presents the form of the model for which the solution is derived and shows how
 particular models can be put in this form.

 Section 2 gives the solution together with the conditions for existence and uniqueness.

 1. THE MODEL

 The model is given by (la), (lb), and (1c) as follows:

 t+1 Xtl
 (l a) [X+]= A[t + yZt, Xt=0 = Xo,

 tpt+l Pt

 where X is an (n x 1) vector of variables predetermined at t; P is an (m x 1) vector of
 variables non-predetermined at t; Z is a (k x 1) vector of exogenous variables; tPt+l is the
 agents' expectation of Pt+,, held at t; A, y are (n + m) x (n + m) and (n + m) x k matrices,
 respectively.

 (lb) tPt+l = E(Pt+,1i2t)

 where E(*) is the mathematical expectation operator; Q2t is the information set at t;
 Q2t =) Q,-,; 12t includes at least past and current values of X, P, Z (it may include other
 exogenous variables than Z; it may include future values of exogenous variables).

 (ic) Vt 3Zt E k 0, aE R such that

 -(1 + i)t'Zkt 'E(Zt+ i 11t) < (1 + i)0'Zt Vi : 0.

 Equation (la) describes the structural model. The difference between predetermined and
 non-predetermined variables is extremely important. A predetermined variable is a

 function only of variables known at time t, that is of variables in f2t, so that Xt+1 = tXt+l
 whatever the realization of the variables in f2t+,. A non-predetermined variable Pt+, can be
 a function of any variable in Q2t+,, so that we can conclude that Pt+, = tPt+l only if the
 realizations of all variables in Qlt+l are equal to their expectations conditional on 12t.

 The structural model imposes the restriction that all agents at a given time have the same
 information, so that "agents' expectation" has a precise meaning. As Example B below
 shows, the "first order" form is not restrictive: models of higher order can be reduced to this
 form.

 Equation (lb) defines rational expectations. Equation (lb) excludes the possibility that
 agents know the values of endogenous variables but not the values of the exogenous
 variables: in such a case, endogenous variables convey information on exogenous vari-
 ables; such cases require a different treatment (see Futia [8]). Condition (1c) simply
 requires that the exogenous variables Z do not "explode too fast." In effect it rules out
 exponential growth of the expectation of Zt+i, held at time t.

 The following examples show how particular models can be put in the required form.

 We thank Kenneth Arrow and two referees of this journal for useful comments.
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 1306 O. J. BLANCHARD AND C. M. KAHN

 EXAMPLE A (A Model of Growth with Money): Consider, for example, the structure of
 the model presented by Sidrauski [15]; savings and thus capital accumulation depend on
 disposable income, which itself depends on the capital stock K&, real money balances,
 M,- P (where M and P denote logarithms), and the expected rate of inflation (,P,+, - P):

 Kt+, - Kt = f(Kt, Mt -Pt, tPt+1 - Pt)

 From asset market equilibrium, there is another relation between the real money stock,
 the capital stock, and the expected rate of inflation:

 Mt - Pt = g(Kt, tPt+ - Pt).

 The model can be written, linearized around its steady state, as

 EKt?1 1 K, [p'1J = A[J + yMt.

 Kt, the capital stock, is predetermined at time t. Pt, the price level, is not. (The model solved
 by Sidrauski assumes adaptive, not rational, expectations.)

 EXAMPLE B: Models with lagged variables or current expectations of variables more
 than one period ahead present no particular problem. Consider the following equation to
 which no economic interpretation will be given:

 Yt + a Yt-2 + 3t Yt+2 = Zt-

 Define

 XIt--Yt-1; X2t--XIt- 1 = Yt-2;

 Pt-t4t+l => tPt+l = t(t+1 Yt+2) = tyt+2-

 The above equation may be rewritten as

 XIt+1 0 0 1 o rXI,1 [ 01

 X2,+1 = [ O 0 X2 0 t+ 0 0 0 1IIYI I0

 tPt+l O -a/3 -1 O Pt /J

 XIt, X2t are predetermined at t; Yt and Pt are not.
 An example of the reduction of a medium size empirical macroeconometric model to a

 model of form (1) can be found in Blanchard [2].

 EXAMPLE C: Models which include past expectations of current and future variables on
 the other hand may be such that they cannot be reduced to form (1). The simplest example
 is

 Yt - at- Yt -Zt.

 This is in effect a "zeroth order" difference equation which cannot be put in the "first order"

 form (1). The same difficulty may arise in more complex models:

 Pt = a (t-lPt+l t-1Pt) + Et.

 (This may be interpreted as the equilibrium condition of an asset market model.)

 EXAMPLE D: This last example shows however that some models with lagged expec-
 tations of present and future variables can be put in form (1). This model can be interpreted
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 LINEAR DIFFERENCE MODELS 1307

 as a multiplier accelerator model:

 Yt = Ct + It + Gt,

 Ct =a( Yt+tYt+)+ Et, a > 0,

 It =3(t0Yt+,-t- Yt)+t >?

 where all symbols are standard and Et, mt are disturbances. Solving the equilibrium
 condition and defining Xt = t- Yt > X,+1 = t Y+1 gives

 [Xt+] 1 [8 ( -ia)]x +t 1 [2 - 2 1 G]t3
 t?Yt+I a +P [ (1- a )] Yt] a +P -1 -1 -1]

 The matrix A is in this case singular. This example also shows the absence of necessary
 connection between "real," "nominal" and "predetermined," "non-predetermined."

 2. THE SOLUTION

 A solution (Xt, Pj) is a sequence of functions of variables in Qt which satisfies (1) for all
 possible realizations of these variables.

 In a manner analogous to (1c), we also require that expectations of Xt and Pt do not
 explode. More precisely,

 Vtt 3 ERfln+m oveR such that

 -(1 + i0'[] S [ E(Xt4Q) 1<(1 + i)Ot[X] 0. Pt E(Pt+ijQt) J!~ ( [Pt Vi'
 This condition in effect rules out exponential growth of the expectation of Xt+i and Pt+

 held at time t. (This in particular rules out "bubbles" of the sort considered by Flood and
 Garber [7].)

 Our strategy is to simplify the model by transforming it into canonical form, following
 Vaughan [18]. Thus A is first transformed into Jordan canonical form (see, for example,
 Halmos [10, pp. 112-115]):

 A =C-'JC

 where the diagonal elements of J, which are the eigenvalues of A, are ordered by increasing
 absolute value.

 J is further decomposed as

 J1 0

 (ni x ni)

 J= 0 J2

 L (mh x m)j

 where J is partitioned so that all eigenvalues of JI are on or inside the unit circle, all
 eigenvalues of J2 are outside the unit circle. Note that so far nothing has been said about the
 relation between m and mi.

 C, C-1, and y are decomposed accordingly:

 F C11 C12 B1l B12 F i

 C_(n X n) (ni X m) ;C-1- (n2 ii2 (n x 2fixk
 C2 C2 , B2 Y ,.\/\,\/
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 1308 0. J. BLANCHARD AND C. M. KAHN

 We may now summarize the results by three propositions. In these propositions, the rank of
 C22 will be assumed to be full, i.e. p(C22) = min (iii, m). This implies that B11 is also of full
 rank. The propositions can be extended when this assumption is relaxed.

 PROPOSITION 1: If m = m, i.e., if the number of eigenvalues of A outside the unit circle is
 equal to the number of non-predetermined variables, then there exists a unique solution.

 This solution is "forward looking" (Sargent and Wallace [12], Shiller [14], Blanchard [1])
 in the following sense: the non-predetermined variables depend on the past only through
 its effect on the current predetermined variables. This solution is

 (2) Xt = Xo, for t = O,

 = B11J1Bh 'Xt_j + -y1Zt-1

 -(BjjJLC12+B12J2C22)C122 S J2ji-1 (C21'Yl + C22Y2)E(Zt+j_j1j2t_),
 i=o

 for t>0,

 (3) Pt = -C2-C21ClX, -c2 E~I ] 1 J (C2171 + C22 Y2)E(Zt+ i1t), for t ? 0. i=O

 It can be solved recursively to give the final form solution:

 t 00 (2-1+C22EZ-+ 1ti (4) Xt= - B11J'- (Bf1lB12-J1Bfl1B12.bi') E Ii (C21y1 + C22y2)E(ZJ+jf21-j)
 j=l i=O

 t

 + E B1lJf-'B1yjZt_j + B11JtB111Xo, for t > 0,
 j=l

 t 00

 (5) Pt = - E B211{1 (Bi12-J1Bi2B1 1) E J i(C21y1+C22y2)E(Zt_j+jj2t_j)
 j=1 i=O

 00

 - E C22 _12Ji-l (C21 Y1 + C22y2)E(Zt+j Q1t)
 i=O

 + > B21J'1Bfl'-yZt_j +B21JJBil'Xo, for t 0.
 j=1

 PROPOSITION 2: If mi > m, i.e. if the number of eigenvalues outside the unit circle exceeds
 the number of non-predetermined variables, there is no solution satisfying both (1) and the
 non-explosion condition.

 PROPOSITION 3: If mi < m, i.e. if the number of eigenvalues outside the unit circle is less
 than the number of non-predetermined variables, there is an infinity of solutions.

 A solution may in particular be such that the non-predetermined variables depend on the
 past directly and not only through its effect on the currently predetermined variables.

 A solution may also be such that a variable not belonging to Zdirectly affects Xand P, i.e.
 that such a variable may be directly included in the functional form of the solution. Note that
 this possibility is excluded when m = mfi. (Of course, if a variable provides information as to
 values of future Z's, it will affect indirectly X and P through expectations of future Z's.)
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 LINEAR DIFFERENCE MODELS 1309

 More precise statements of the last two propositions, together with a sketch of proofs are
 given in the Appendix.

 We conclude with a series of remarks.
 How likely are we to have mi = m in a particular model?
 It may be that the system described by (1) is just the set of necessary conditions for

 maximization of a quadratic function subject to linear constraints. In this case the matrix A
 will have more structure than we have imposed here, and the condition mi = m will always
 hold. (See Hansen and Sargent [11].)

 The condition mi = m is also clearly related to the strict saddle point property discussed in
 the context of growth models: the above proposition states in effect that a unique solution
 will exist if and only if A has the strict saddle point property. Hence we know that many
 models have this property. Most recent macroeconomic models also satisfy mi = m; this is
 the case for Sargent and Wallace [13] or the larger size models by Hall [9], Taylor [17], and
 Blanchard [2], for example.

 Finally, we know that examples can be constructed which do not satisfy m = m. Models in
 which mi < m have been constructed by-in increasing order of complexity-Blanchard
 [1], Shiller [14], Taylor [16], Calvo [5], and Burmeister, Caton, Dobell, and Ross [3],
 among others. Taylor in particular has pointed out the non-uniqueness and the possible
 presence of irrelevant variables in the solution.

 If a model is to be used for simulations, the existence of a unique solution is easily
 checked by computing the eigenvalues of A. Simulations should use the recursive formulas
 (2) and (3) rather than the final form solution (4) and (5). A computer algorithm
 corresponding to (2) and (3) is available upon request.

 Because they require computing the roots of an n + mth order polynomial, (2) and (3) are
 in general analytically intractable. The case where n and m are equal to one, i.e. the case
 where there is one predetermined and one non-predetermined variable appears often
 (Fischer [6], for example) and is easy to handle analytically. Its solution is given here for
 convenience. Let

 F1
 A a11 a121 y (1 x k)

 (2 x 2) a21 a22J' (2 x k) Y2 ,

 L(l x k)j
 let A1,A2 be the eigenvalues of A, kA11 < 1, 1A21>1. Define ,u (A - a1 )A1 - a12A2. Then,
 a unique solution exists and is given by

 xt = xo, for t = O,

 = Axt-1 + yZt-l + k E A' 1E(Zt+i_1t_1), for t> 0,
 i=O

 00

 Pt = al- [(A -a21)x + .i Aj'E(Zt+JQt)], for t ? 0.
 i=O

 CONCLUSION

 We have derived explicit solutions, and conditions for the existence and uniqueness of
 those solutions, for models of form (1). Although the class of models reducible to this form
 includes most existing models, Example C demonstrates that there exist models which
 cannot be reduced to this form. Thus there remain two open questions: the characterization
 of the class of models not reducible to (1) and the extension of this method to cover models
 in that class.

 Harvard University

 Manuscript received June, 1978; final revision received August, 1979.
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 1310 0. J. BLANCHARD AND C. M. KAHN

 APPENDIX

 Consider the system given by (1), at time t + i. Take expectations on both sides, conditional on Qt. As

 Qt C,?Q+i, this gives

 (Al) [ =J A] +y,IZt+i, Vi O.

 Consider the transformation

 [ ] C[ p where C is defined in the text.

 Premultiplying both sides of (Al) by C, and using A = C-'JC,

 (A2) [tYt+1+1j 0 J[ Y+j t Vi aO.
 totQ+i?,JL 0 J2J tQt+i

 As C is invertible, knowledge of Xt and Pt is equivalent to knowledge of Yt and Qt: the transformation
 does not affect Qt. Also existence (uniqueness) of a solution in (A2) is equivalent to existence
 (uniqueness) of a solution in (Al).

 Equation (A2) is composed of two subsystems. The first n lines give

 (A3) tyt+i+l = Jl tyt+i + (Cllyl + C12y2)tZt+i, Vi 2 0.

 By construction of J1, this system is stable or borderline stable. The second subsystem however will, by

 construction of J2, explode and violate the non-explosion condition unless:
 00

 (A4) Q, = - E J 1 (C21y1 + C22y2)tZt+i.
 i=O

 (A4) uniquely determines Qt. Thus existence and uniqueness of solutions depends on existence and
 uniqueness of the sequence of Yt, Yt has to satisfy (A3). Because (A2) is derived from (Al), a solution
 must however also satisfy two other conditions:

 Consider the inverse transformation

 [xt]= C-Yj [Bil B12][ Yt]
 [Pt [Qt B21 B22 Q t

 where C-' was defined in the text. Expanding the first n lines at time t = 0,

 (A5) XO=B1 YO+Bl2Qo.

 Thus initial conditions XO impose restrictions on YO. The first n lines also imply:

 Xt+l- tXt+l = B1l(Yt+l - tYt+-) +B12(Qttl-tQt+l)-

 As Xt is predetermined Xt+l = tXt+i. This imposes the following relation on Y and Q:

 (A6) 0 = B1l(Yt+1 - tYt+1) + B12(Qt+l - tQt+l)'

 In what follows, we assume that Bl, is of full rank, i.e. that p(Bll) = min (m, mi); this is equivalent to
 assuming that C22 is of full rank. The extension to the case where Bl, is not of full rank is
 straightforward and tedious. If rm = m, then 3B 1'. From (A4), Qo is determined. From (A5), YO is
 uniquely determined. From (A3), 0 Y, is determined, and Y, is determined from (A6). The system is
 solved recursively. The sequence of X and P is in turn obtained by using the C-' transformation.
 Tedious computation gives (2) and (5) in the text. This proves Proposition 1.

 If tm > m, B1, imposes more than fi restrictions on Yo in (A5). (AS) is overdetermined and thus has
 almost always no solution. If YO does not exist, then Po does not exist. This proves Proposition 2.

 If mi < m, (AS) is underdetermined. In addition (A6) no longer uniquely determines Yt+1 given
 tYt+,. In general Yt+l = tYt+l + Wt+l satisfies (A6), where Wt+, is any random variable such that

 (A7) Wt+l E ft+j; tjwt+ = 0 Vj 2 0; Bil Wt = B12(-1Qt - Qt)-

 Because B, I is not invertible, Wt may include variables other than Z. Thus the general solution is (A4)
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 LINEAR DIFFERENCE MODELS 1311

 for Q,, and

 Yt= Jl Yt1 + (Cllll + C12Y2)Zt-1 + Wt

 where Wt satisfies (A7) and YO satisfies (AS). Again the C'1 transformation can be used to solve for Xt
 and Pt. This proves Proposition 3.
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